Sequence analysis

M2Align: parallel multiple sequence alignment with a multi-objective metaheuristic

Cristian Zambrano-Vega,1 Antonio J. Nebro,2,* José García-Nieto2 and José F. Aldana-Montes2

1Facultad de Ciencias de la Ingeniería, Universidad Técnica Estatal de Quevedo, Quevedo, Ecuador and 2Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga, 29071 Málaga, Spain

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on December 24, 2016; revised on May 16, 2017; editorial decision on May 20, 2017; accepted on May 20, 2017

Abstract

Motivation: Multiple sequence alignment (MSA) is an NP-complete optimization problem found in computational biology, where the time complexity of finding an optimal alignment raises exponentially along with the number of sequences and their lengths. Additionally, to assess the quality of a MSA, a number of objectives can be taken into account, such as maximizing the sum-of-pairs, maximizing the totally conserved columns, minimizing the number of gaps, or maximizing structural information based scores such as STRIKE. An approach to deal with MSA problems is to use multi-objective metaheuristics, which are non-exact stochastic optimization methods that can produce high quality solutions to complex problems having two or more objectives to be optimized at the same time. Our motivation is to provide a multi-objective metaheuristic for MSA that can run in parallel taking advantage of multi-core-based computers.

Results: The software tool we propose, called M2Align (Multi-objective Multiple Sequence Alignment), is a parallel and more efficient version of the three-objective optimizer for sequence alignments MO-SAStrE, able of reducing the algorithm computing time by exploiting the computing capabilities of common multi-core CPU clusters. Our performance evaluation over datasets of the benchmark BAliBASE (v3.0) shows that significant time reductions can be achieved by using up to 20 cores. Even in sequential executions, M2Align is faster than MO-SAStrE, thanks to the encoding method used for the alignments.

Availability and implementation: M2Align is an open source project hosted in GitHub, where the source code and sample datasets can be freely obtained: https://github.com/KhaosResearch/M2Align.

Contact: antonio@lcc.uma.es

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Multiple sequence alignment (MSA) (Bacon and Anderson, 1986) is the process of aligning three or more biological sequences (DNA, RNA, protein), and constitutes a widely used technique in several areas of computational biology, such as homology searches, genomic annotation, protein structure prediction, gene regulation networks, or functional genomics. MSA is an NP-complete optimization problem (Wang and Jiang, 1994), where the time complexity of finding an optimal alignment raises exponentially along with the number of sequences and their lengths.

Another issue in MSA is to provide an efficient method to measure the alignment accuracy, as there is not a consensus on how to do it. There are scores based on nucleotide or amino acid information, such as the totally conserved columns (TCC) percentage and the
2 Materials and methods

2.1 The NSGA-II algorithm

M2Align and MO-SAStrE are versions of NSGA-II (Deb et al., 2002), the most well-known and used multi-objective metaheuristic, although they are adapted to tackle with the MSA. NSGA-II follows the scheme of a generational evolutionary algorithm, as is depicted in Figure 1. Initially, a population of N tentative solutions is created and then an auxiliary population, also of size N, is filled by applying the selection, crossover and mutation evolutionary operators to the solutions of the original population. Then, both populations are merged into one and the best N solutions of it are selected to constitute the population for the next generation of the algorithm.

The term best applied to compare solutions in multi-objective optimization is tricky in the situations in which none of them is better than the other in all the objectives (these solutions are referred as non-dominated). The approach taken by NSGA-II is to make a dominance ranking, in the sense that those non-dominated solutions in the combined population has a rank of 1; the rest of non-dominated solutions have a rank of 2, and so on. The solutions are then sorted by rank, and the ones with better ranks are included in the next population. This scheme allows to guide the search towards the Pareto front (i.e. the set of those solutions that are non-dominated with respect to any other in the search space).

If we take a look on the example in Figure 1, we can observe that the group of solutions having a rank of 3 does not fit into the next population, so an additional mechanism must be applied to select some of them. The idea is to apply a density estimator to promote the diversity of the solutions in the population; NSGA-II uses an estimator known as crowding distance (defined in Supplementary Material).

These steps are repeated until a stopping condition is fulfilled, typically by performing a fixed number of iterations. The output of the algorithm execution will be an approximation of the Pareto front.

It is important to note that before the merging and ranking steps, all the solutions of the auxiliary population must be evaluated. This can be computationally expensive in the case of large MSA problems, which suggests that an approach to accelerate the execution of the algorithm is to perform all the evaluations in parallel.

2.2 Multi-objective formulation and biological justification

As commented before, M2Align is configured to optimize three objectives: STRIKE, percentage of TCCs and percentage of non-gaps. These three objectives are to be maximized.

• If PDB structures are not available, M2Align provides SOP and WSP scores as alternatives to STRIKE.

• M2Align is an Open Source project hosted in GitHub (https://github.com/khaoSResearch/M2Align), thus facilitating their use by interested users. Information about how to download, compile and run it is included in the project site.
columns indicate more conserved regions in sequences. The last score, the percentage of non-gaps, has sense because the number of gaps can be overused to improve the number of alignments, so the idea is to reducing this percentage is to find more compact and realistic alignments. More details about these scores can be found in (Ortuño et al., 2013).

2.3 Strategy to generate the initial population
The usual approach to create the initial population in evolutionary algorithms is to fill it with randomly generated solutions, but in MO-SAStrE the adopted approach is to use a set of pre-computed alignments performed by other MSA tools. In M2Align, we follow a similar strategy, i.e. by adding pre-computed solutions to the initial population and creating new alignments by applying a genetic crossover operator to pairs of randomly selected solutions to fill the rest of the population.

For our experiments, we have focused on the the BAiLBASE data-set (v3.0) (Thompson et al., 2005). For every problem instance in this benchmark, a number of alignments by using eight representative MSA tools have been generated, namely: ClustalW, MUSCLE, Kalign, Mafft, RetAlign, TCOFFEE, ProbCons and FSA. Their specific versions and features are detailed in Table 1.

Table 1. Methods used to generate the initial population of the algorithms. These eight tools are applied to build initial MSAs for the BAiLBASE datasets

<table>
<thead>
<tr>
<th>Tool</th>
<th>Version</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClustalW (Thompson et al., 1994)</td>
<td>2.1</td>
<td>Progressive</td>
</tr>
<tr>
<td>MUSCLE (Edgar, 2004)</td>
<td>3.8.31</td>
<td>Progressive</td>
</tr>
<tr>
<td>Kalign (Lassmann and Sonnhammer, 2005)</td>
<td>2.04</td>
<td>Progressive</td>
</tr>
<tr>
<td>Mafft (Katoh et al., 2002)</td>
<td>7.245</td>
<td>Progressive</td>
</tr>
<tr>
<td>RetAlign (Novák et al., 2010)</td>
<td>1.0</td>
<td>Progressive</td>
</tr>
<tr>
<td>TCOFFEE (Notredame et al., 2000)</td>
<td>11.00</td>
<td>Consistency-based</td>
</tr>
<tr>
<td>ProbCons (Do et al., 2005)</td>
<td>1.12</td>
<td>Consistency-based</td>
</tr>
<tr>
<td>FSA (Roberts et al., 2009)</td>
<td>1.15.9</td>
<td>Consistency-based</td>
</tr>
</tbody>
</table>

groups of gaps, similar to the one proposed by Rubio-Largo et al. (2015). This MSA representation only stores the positions (begin, end) of the groups of gaps into the sequences. Figure 2 illustrates an example.

Thus, given a sequence S, it is encoded to S’ in this way: S’ = (Bgg1, Egg1), (Bgg2, Egg2), ..., (Bggn, Eggn) where n is the number of groups of gaps of the sequence S, and Bggx and Eggx represent the initial and final position into the sequence S of the group of gaps x, respectively. This codification reduces the time of execution of both genetic crossover and mutation operators, since numerical operations are applied on the gap lists instead of manipulating large sequence of characters.

2.5 Genetic operators for MSA
We have implemented the same mutation and crossover operators used by MO-SAStrE (Ortuño et al., 2013). The mutation operator is Closed Gap Shifting, where a random set of closed gaps are shifted to another random position in a sequence. The crossover operator is the Single-Point Crossover adapted to alignments (da Silva et al., 2010). This operator randomly selects a position from the parent 1 by splitting it into two blocks (P1a and P1b) and the parent 2 is tailored so that the right piece can be joined to the left piece of the first parent (P1a) and vice versa. Then, the selected blocks are crossed between these two parents, generating two new individuals with the combination of the blocks: [P1a + P2b] and [P1a + P1b]. Finally, with the aim of reducing the number of gaps into the alignment, the columns containing only gaps are removed. These two operators are illustrated in Figure 3.

2.6 Parallel approach
As commented before, a natural strategy for parallelizing NSGA-II is to perform all the function evaluations of the new created solutions at the same time. However, the rest of the steps will be still executed sequentially, so the ratio between parallel and sequential computations must be clearly favorable to the former to obtain significant time reductions.
For this reason, we have made a study to identify those operations that contribute in a significant way to the overall execution time. For this purpose, Figure 4 shows the average serial time profiles for the algorithm NSGA-II when solving the BALiBASE instance BB20001. In this figure, we detail the time percentages spent on the following operations of the algorithm: solution evaluation, replacement, reproduction (given a set of selected parents, crossover and mutation operators are applied to generate new individuals), creation of the initial population, and selection operator.

These figures indicate that the parallel approach used in M2Align, evaluating the solutions in parallel, is justified since the evaluation is clearly the most time consuming task.

The parallel scheme adopted in M2Align has also the advantages of: first, do not requiring any change in the original algorithm and, second, the behaviour of NSGA-II remains unchanged.

2.7 Implementation details
M2Align has been developed by using the jMetal framework for multi-objective optimization (Nebro et al., 2015). The object-oriented architecture of jMetal has allowed to re-use its NSGA-II implementation.

The developing of M2Align has required to include the codification scheme of MSA solutions based on the specification only of the groups of gaps into the sequences, the crossover and mutation operators, and the implementation of the scores. To facilitate the specification of the particular objectives to be optimized, M2Align provides a generic MSA problem template that can be easily instantiated with any of the included scores.

The parallelization scheme used in M2Align is also taken from jMetal. The evaluation of the solutions of the population of a meta-heuristic is a self-contained procedure in most of jMetal meta-heuristics (i.e., they have a `evaluatePopulation(List<Solution>)` method), which includes an instance of a class called `Evaluator`, being this object the responsible of evaluating all the solutions. The idea is to use a multi-threaded evaluator that is able to perform all the solution evaluations in parallel in multi-core based computers.

3 Results and discussion
To assess the performance of M2Align, we have chosen the Benchmark Alignment dataBASE (BALiBASE v3.0) (Thompson et al., 2005) which contains 218 sets of sequences (extracted from the PDB) that are prepared to be aligned by MSA approaches. We have defined the sets of sequences in six subsets according to their families and similarities: RV11, RV12, RV20, RV30, RV40 and RV50; each group presents different biological characteristics. The experiments have been carried out over a multi-core system...
cores at 2.3GHz and 25MB Cache running CentOS Linux 7.

Efficiency (RV50 5.19 1.46 3.54 89% 0.74 7.03 70% 0.59 8.77 44%
RV30 6.55 1.88 3.48 87% 0.99 6.61 66% 0.79 8.28 41%
RV20 7.78 2.30 3.38 84% 1.20 6.49 65% 0.94 8.25 41%
RV12 4.58 1.34 3.43 86% 0.73 6.29 63% 0.63 7.22 36%
RV11 9.05 2.54 3.56 89% 1.27 7.15 72% 0.99 9.12 46%

Formation is included in the Supplementary Material, which contains the parallel results for each of the 218 instances of the benchmark BAliBASE.

With the aim of knowing the performance of the sequential version of M2Align over the original version of MO-SAStRe, we have carried out some executions of both techniques solving a selected number of BAliBASE datasets, setting the same conditions for a fair comparison. The tests have been carried out over the same computing system, using the same parameters and with the same input datasets of pre-alignments for the generation of the initial population. Table 3 shows the execution time (in minutes) of both techniques.

As we can see, M2Align performs a faster execution aligning each one of these datasets. For example, in the case of the BB30009 instance, MO-SAStRe needs 294.24 minutes, but the sequential version of M2Align only requires 0.55 min. The time difference are due mainly to the gap group based codification of the alignments, which allows an efficient implementation of the crossover and mutation operators.

3.2 Comparison with other MSA methodologies

In order to determine the accuracy of M2Align, we have compared it with other classical MSA techniques detailed in Table 4 by aligning all the 218 datasets of BAliBASE v3.0. This table shows the average scores of the three objectives (STRIKE, TCC and Non-Gaps) optimized by M2Align, and two scoring functions provided by BAliBASE, the sum-of-pairs (SP) and total-column (TC) scores, where unreliable regions are included in the reference. We have also included the results obtained with 3D-Coffee (Poirot et al., 2004), a tool that is representative of methods using structural information.

We can see that M2Align generates more accuracy alignments according to STRIKE and TCC; the Non-Gaps% score is better performed by MO-SAStRe. If we take into account the SP and TC scores of BAliBASE, M2Align yields the highest scores if we exclude the BAliBASE reference values. We could not solve all the BAliBASE problems with the original MO-SAStRe code, so the values of this algorithm in Table 4 have been taken from (Ortuño et al., 2013) but the TC score, which was not included in that article.

A more detailed comparison is shown in the Supplementary Material, where we have added two tables with the scores generated by M2Align and the other MSA techniques when aligning eight selected instances of BAliBASE v3.0.

The results reported in Table 4 shows that the numerical results of M2Align and the original MO-SAStRe algorithm are not the
same. There are some reasons explaining this fact. On the one hand, M2Align is implemented in Java and takes the NSGA-II algorithm provided by the jMetal framework, while MO-SAStrE is implemented in MatLab and uses the NSGA-II provided by that tool; this implies that some components (e.g. the random number generator) will not be the same. On the other hand, the description of the crossover and mutation operators in the MO-SAStrE paper is very high level, remaining some implementation details unexplained. As a consequence, both algorithms do not have the same behaviour when solving MSA problems.

4 Discussion

The obtained parallel performance of M2Align on the BAliBASE problems indicates that important time reductions can be obtained with up to 20 cores, but the efficiency decreases with a higher number of cores. The main reason is that the working of M2Align alternates a parallel step (evaluating the solutions) with a sequential one (the rest of the algorithm). Furthermore, the parallel scheme is synchronous, which implies that the parallel step finishes when all the solutions have been evaluated. In the case of MSA, the solutions can have different length so their evaluation time may not be the same, what hinders having all the cores busy the 100% of the time (this effect is accentuated the greater the number of cores). Anyway, we have to consider that we are not altering the behaviour of the original algorithm and, in some cases, the speed-up with 20 cores can be higher than 11 (see problem BB20007 in Table 3 in the Supplementary Material), what it is an interesting outcome in practical terms.

We have made some pilot tests with more complex MSAs [we include an experiment in Section 4 in the Supplementary Material using problems included in Capella-Gutiérrez et al. (2009)], and in these situations the following issues must be taken into account:

- The number of gaps in the MSA has a strong influence in the performance of M2Align due to the encoding scheme used.
- Medium scale problems are difficult to solve in a reasonable amount of time using our multi-core computing system.

Medium and large scale MSAs are a challenge to tools such as M2Align. Dealing with these problems would require to change the underlying MO-SAStrE/NSGA-II algorithm and to use a more powerful parallel computing system. Some strategies to consider are incorporating local search strategies and using an asynchronous version of NSGA-II (Durillo et al., 2008) to avoid the bottleneck of the sequential part of the algorithm and to have the cores working most of the time.

5 Conclusions

The alignment of multiple biological sequences can be a computational intensive task when the sequences are long and numerous, so an approach to cope with it is to take advantage of the parallelism potential provided by current multi-core computers.

We have proposed a tool called M2Align which includes a reimplementation of the MO-SAStrE MSA algorithm, but with a number of significant improvements, being the most remarkable one the parallel execution of this algorithm. Other differences include an efficient MSA encoding and the fact that M2Align is an Open Source project that is hosted in GitHub repository.

The results obtained reveal that significant time reductions can be achieved by using up to 20 cores when solving the datasets included in the BAliBASE 3.0 benchmark. Our experiments also indicate that our implementation of MO-SAStrE is clearly more efficient than the original one. Finally, a comparison against a set of alignment techniques reveals that M2Align provides the best overall results in the STRIKE and TCC scores.

Acknowledgements

C.Z.-V. acknowledges Universidad Técnica Estatal de Quevedo (Ecuador) for supporting his doctoral stays at Departamento de Lenguajes y Ciencias de la Computación of Universidad de Málaga (Spain).

Funding

This work has been partially supported by the Secretaría de Educación Superior Ciencia y Tecnología SENESCYT from Ecuador, and Spanish Grants TIN2014-58304-R (Ministerio de Economía y Competitividad), P11-TIC-7529 and P12-TIC-1519 (Plan Andaluz I + D + I – Junta de Andalucía). José García-Nieto is recipient of a Post-Doctoral fellowship of ‘Captación de Talento para la Investigación’ at Universidad de Málaga.

Conflict of Interest

None declared.

References

